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ABSTRACT. This article is devoted to the study of the existence of solutions as
well as the existence and uniqueness of solutions to a boundary value problem
on the half-line for higher order nonlinear ordinary differential equations. By
the use of the Schauder-Tikhonov theorem, an existence result is obtained; also,
via the Banach contraction principle, an existence and uniqueness criterion is
established. These two results are applied, in particular, to the specific class
of higher order nonlinear ordinary differential equations of Emden-Fowler type
and to the special case of higher order linear ordinary differential equations,
respectively. Moreover, some (general or specific) examples demonstrating the
applicability of our results are given.

1. INTRODUCTION AND PRELIMINARIES

In the asymptotic theory of (ordinary or, more generally, functional) differential
equations, it is of great interest to study the problem of the existence of solutions
with prescribed asymptotic behavior. This problem has been the subject of many
investigations; we restrict ourselves to mentioning the papers [1, 2, 6, 10—13, 1538,
41—45] (see also the references cited therein). This paper deals with the existence
and the existence and uniqueness of solutions with a specific prescribed asymptotic
behavior for higher order nonlinear ordinary differential equations. So, our work is
a continuation of the study in the above mentioned papers.

In particular, one main center of interest has been in the problem of the exis-
tence of global solutions (i.e., solutions on the whole given interval) with prescribed
asymptotic behavior. In the last few years, the existence of global solutions with
prescribed asymptotic behavior is usually formulated as the existence of solutions
to boundary value problems on the half-line; see, for example, the recent papers 6,
18—20, 29—32, 42—44] (and the references cited therein). The relation between the
present article and the papers [19, 20, 29—32] is described below. As it concerns
the papers [6, 18, 42—44], they are closely related to the articles [19, 20].

Recently, Mavridis, the author and Tsamatos [19] studied the existence of so-
lutions to a boundary value problem on the half-line for second order nonlinear
delay differential equations; the basic tool in the approach in [19] is the classical
Schauder theorem. Later, in a different direction, the same authors [20] used the
Krasnosel’ski¥ fixed point theorem to investigate the existence of multiple positive
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solutions to a boundary value problem on the half-line for second order nonlinear
delay differential equations. By the use of the Schauder-Tikhonov theorem and
the Banach contraction principle, the author [30] has recently studied the problem
of the existence of solutions and of the existence and uniqueness of solutions to a
boundary value problem on the half-line for nonlinear two-dimensional delay dif-
ferential systems. The results obtained in [30] include, as special cases, those given
in [19] for second order nonlinear delay differential equations.

Also, recently, the author [29] established sufficient conditions that guarantee
the existence of positive increasing solutions to a boundary value problem on the
half-line for second order nonlinear delay differential equations with positive delays.
Motivated by the work in [29] (and, in a sense, by the author’s paper [30]), the au-
thor [31] has considered a boundary value problem on the half-line for nonlinear
two-dimensional delay differential systems with positive delays, and has obtained
sufficient conditions for the existence of positive solutions. The results contained
in [29] can be derived, as special consequences, from the ones established in [31].
Moreover, very recently, the author [32] extended the results given in [29] to the
more general case of higher order nonlinear delay differential equations. More pre-
cisely, in (32], the author obtained sufficient conditions that guarantee the existence
of positive solutions to a boundary value problem on the half-line for n-th order
(n > 2) nonlinear delay differential equations with positive delays. Note that the
assumption of the positivity of the delays is an essential condition to the approach
in [29, 31, 32]; hence, the results obtained in these works are not applicable to
the corresponding boundary value problems on the half-line for nonlinear ordinary
differential equations or systems. We also notice that the approach in the papers
[29, 31, 32] is elementary and is essentially based on an old idea which appeared in
an author’s paper in 1981.

The present paper is essentially motivated by the works in [19, 20, 29—32|.
Here, a boundary value problem on the half-line for n-th order (n > 1) nonlinear
ordinary differential equations is considered, and the problems of the existence of
solutions as well as of the existence and uniqueness of solutions are treated. Qur
approach is based on the use of the Schauder-Tikhonov theorem (for the problem
of the existence of solutions) and the Banach contraction principle (for the problem
of the existence and uniqueness of solutions). Qur results in this paper will be
established in the classical case of ordinary differential equations. Following the
lines of this work and using some elements of the techniques applied in [19, 30],
one can extend the results of the present paper to the more general case of a
corresponding boundary value problem on the half-line for n-th order (n > 1)
nonlinear delay differential equations.

Consider the n-th order (n > 1) nonlinear ordinary differential equation

(L.1) 2™ )+ £ (4,2(2),5 (¢),, 2D (1)) =0,

where f is a continuous real-valued function on [0,00) x R™. Our interest will be
concentrated on global solutions of (1.1), i.e., on solutions of (1.1) on the whole
interval [0, co). Together with the differential equation (1.1), we specify the initial
condition

(12) z(0) =2z’ (0) =... =22 (0) =0.



A HIGHER ORDER BVP ON THE HALF-LINE 3

Moreover, along with (1.1), we impose a condition of the form
(1.3) Jim "D (1) =¢,
where £ is a given real number. Tt must be noted that (1.3) implies that

. z® @) 1
etk (n—1—k)!

The differential equation (1.1) together with the conditions (1.2) and (1.3) consti-
tute a boundary value problem (BVP, for short) on the half-line. A solution on
[0,00) of (1.1) satisfying (1.2) and (1.3) is said to be a solution of the boundary
value problem (1.1)—(1.3) or, more briefly, a solution of the BVP (1.1)—(1.3).

Here, we shall introduce a useful notation that will be used throughout the
paper without mentioning it any further. For any continuous real-valued function
h defined on the interval [0, c0), we set

t (t _ S)n—2—k
I [R] (t) = i mh(s)ds for >0 (=0, 1i:un—2)-

£ (k=0,1,..,n—12).

For our convenience, we consider the integrodifferential equation

(1.4) v @)+ FE L @)Ll @), 2 ] ),y (8) =0

‘We are interested in solutions of (1.4) on the whole interval [0,00). With the
integrodifferential equation (1.4), we associate the condition

(1.5) lim y (£) = &.

t—00

Equations (1.4) and (1.5) constitute a boundary value problem (BVP, for short)

on the half-line. A solution on [0, 00) of the integrodifferential equation (1.4) that

satisfies the condition (1.5) will be called a solution of the boundary value problem

(1.4) and (1.5) or, more briefly, a solution of the BVP (1.4) and (1.8)-
Furthermore, let us consider the integral equation

L6) @) =£+ / " (T[] (4) T [9] () 5 oo Tz 9] () 9 () s

Our interest is concentrated on solutions of (1.6) on the whole interval [0, o).
The following lemma plays a crucial role in our approach in the present paper.

Lemma 1.1. If z is a solution of the BVP (1.1)—(1.3), then the function y
defined by

(1.7 y@) =z (@{) fort>0
is a solution of the BVP (1.4) and (1.5). Conversely, if y is a solution of the BVP
(1.4) and (1.5), then the function = defined by

i s n—2
(1.8) 20 = /0 %—jé)Ty(s)ds Ford 0

is a solution of the BVP (1.1)—(1.3). Furthermore, a continuous real-valued func-
tion y defined on the interval [0, 00) is a solution of the BVP (1.4) and (1.5) if and
only if it is a solution on [0,00) of the integral equation (1.6).
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Proof. Let z be a solution of the BVP (1.1)—(1.3), and define the function y
by (1.7). By taking into account the initial condition (1.2), after some elementary
calculations, we can show that

+ (t _ s)ﬂ.—Z—k

RS e

™V (s)ds fort>0 (k=0,1,..,n—2).

Thus, in view of (1.7), we have
(1.9) z® () =Ly (t) fort>0 (k=0,1,..,n—2).

By (1.7) and (1.9), the fact that « is a solution on [0, co) of the differential equation
(1.1) implies that y is a solution on [0, co) of the integrodifferential equation (1.4).
Moreover, because of (1.7), the fact that z satisfies condition (1.3) means that y
satisfies condition (1.5). So, the function y is a solution of the BVP (1.4) and (1.5).

Conversely, let us consider a solution y of the BVP (1.4) and (1.5), and define
the function = by (1.8). From (1.8) it follows easily that z satisfies (1.9) and
(1.7). Because of (1.7) and (1.9), the fact that y is a solution on [0,c0) of the
integrodifferential equation (1.4) guarantees that z is a solution on [0, 00) of the
differential equation (1.1). Also, it follows from (1.9) that x satisfies the initial
condition (1.2). Moreover, by (1.7), the fact that y satisfies condition (1.5) ensures
that z satisfies condition (1.3). Hence, z is a solution of the BVP (1.1)—(1.3).

Now, let y be a continuous real-valued function defined on the interval [0, co).
Assume, first, that y is a solution on [0, 0o) of the integral equation (1.6). Then we
immediately see that y satisfies (1.4) for all £ > 0, i.e., that y is a solution on [0, c0)
of the integrodifferential equation (1.4). Also, we see that y satisfies condition (1.5).
Thus, y is a solution of the BVP (1.4) and (1.5). Next, let us assume that y is a
solution of the BVP (1.4) and (1.5). Then, it follows from (1.4) that

Jmy@) -v@+ [ o] )50 @), Faca 5] @),y () du = 0

for every t > 0. So, by taking into account condition (1.5), we see that y satisfies
(1.6) for all t > 0, i.e., that y is a solution on [0, 00) of the integral equation (1.6).
The proof of our lemma is complete.

Our main results in this paper are formulated as two theorems (Theorems 2.1 and
2.2), which will be stated in Section 2. Theorem 2.1 establishes sufficient conditions
for the BVP (1.1)—(1.3) to have at least one solution, while Theorem 2.2 provides
conditions that guarantee the existence of a unique solution of the BVP (1.1)—(1.3).
Section 2 contains also some useful comments about these two theorems. The proofs
of Theorems 2.1 and 2.2 will be presented in Section 3. Section 4 is devoted to the
application of Theorem 2.1 to the specific class of n-th order (n > 1) nonlinear
ordinary differential equations of Emden-Fowler type as well as to the application
of Theorem 2.2 to the special case of n-th order (n > 1) linear ordinary differential
equations. Moreover, Section 4 includes some (general or specific) examples, which
demonstrate the applicability of our theorems.
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2. STATEMENT OF THE MAIN RESULTS AND COMMENTS

Qur main results are the following two theorems.

Theorem 2.1. Assume that

(21) |.f (t, 20,21, ---52:73—1)‘ < F (t) |301 ) |21| yisisy |zn—1|)
for all (t,20,21,...,2n—1) € [0,00) x R™,
where F' is a nonnegative continuous real-valued function on [0, 00) x [0, 00)™. Also,
assume that, for each t > 0, the function F (t,-,-,...,-) is increasing on [0,00)™ in
the sense that F (t,20,21, ..., Zn—1) < F (¢, w0, w1, -.., Wn—1) for any (2o, 21, ---; Za—1);
(Wo, W1y <oy Wn—1) @ [0,00)™ with 20 < wo, z1 S W1, oy Zn—1 < Wn—1-
Let there exist a real number ¢ with ¢ > |§| so that

. P ty——et™ LB . <c—|€|.
(2.2) /0 (t, L Y owr ,ct,c) dt < c— |¢]
Then the BVP (1.1)—(1.3) has at least one solution = such that

(2.3) il R PR EEIPINT () £2 [ -

(n—1—29)! (n—1—2)! Jor everg £20

(=0,1,..,n—1).

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Furthermore, let the
following generalized Lipschitz condition be satisfied:

(2-4) |f(t: 20,21, ---;zn—l) = f (t, W, W1y eeey wn—l)l
<L (t) max{|zg — ’wol ; 121 — w1| gresiy |Zﬂ,_1 — 'w.n,_]_l}
for all (t,2g,21, - Zn—1), (&Wo, W1, .-, Wn_1) n [0,00) x R",

where L is a nonnegative continuous real-valued function on the interval [0,00).

Assume that there exists a positive continuous real-valued function p on the interval
[0, 00) with

(2-5) 0 < liminfp (¢) < limn supp (t) <oo
such that

- ~ L I I I d 1
@6) sup |5 [ B maxllp] (), b ) Tos 7)(4) £ @)} ] <1

Let there exist a real number ¢ with ¢ > || so that (2.2) holds. Then the BVP
(1.1)—(1.3) has ezactly one solution T with

2.7)

gtn=1) (t)| <c foradllt=>0;

this unique solution x is such that (2.3) holds.
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Remark 2.3. In the conclusions of Theorems 2.1 and 2.2, the solution z of the
BVP (1.1)—(1.3) satisfies (2.3), i.e., it is such that

(2.8) _—_(_ncj‘fl;ﬁtn—l—k < z® (1) < ———(:L__if{jkg)rté_l_k for every t > 0

(k=0,1,..,n—2)
and
(2.9) —c+|¢] + € < 2D (t)<c— €]+ £ for every t > 0.

It is remarkable that, because of the initial condition (1.2), inequalities (2.8) are
consequences of inequalities (2.9).

Remark 2.4. We will present here some important observations about the
solution z of the BVP (1.1)—(1.3) in the conclusions of Theorems 2.1 and 2.2; this
solution satisfies (2.3).

Assume that £ > 0. Then (2.3) is written as

—c+ 2¢

(2.3’) m

tn—l—i < w(a’) (f) <

't”‘—l_i for every t > 0

c
(n—1-—1)
(¢t=0,1,..,n—1).
Furthermore, in addition to the hypothesis c > €, let us suppose that ¢ < 26. We
thus have 0 < £ < ¢ < 2¢. Then, (2.3') guarantees that z(¥) (k =0,1,...,n—2) are
positive on the interval (0,00) and such that t]in.}o:t:(’“) (t) =00 (k=0,1,...,n—2).

Also, from (2.3') it follows that z("~Y) is positive on the interval [0, co).
Analogously, in the case where 26 < —c < £ < 0, we can see that z(*) (k =
0,1,...,m — 2) are negative on (0,00) and such that t]im z® () = —00 (k =

0,1,...,n — 2), and that (*~1 4s negative on [0, c).

Remark 2.5. Theorem 2.2 can be applied with p(¢) = 1 for ¢ > 0. In this
-special case, (2.5) is automatically fulfilled and assumption (2.6) becomes

oo n—1 n—2
(2.10) A L(t)max{(?:_ i (T:_z)!,...,t,l} <1

More precisely, we have the following particular result:

Let the assumptions of Theorem 2.1 hold. PFurthermore, let the generalized Lip-
schitz condition (2.4) be satisfied, where L is a nonnegative continuous real-valued
Junction on the interval [0,00) such that (2.10) holds. Let there exist a real num-
ber ¢ with ¢ > |€| so that (2.2) holds. Then the BVP (1.1)—(1.3) has ezactly one
solution x satisfying (2.7); this unique solution z is such that (2.3) holds.

Observe that condition (2.10) implies that

(2.11) /0 Tenig (t) < 0.

It is an open problem whether the assertion of the above particular result remains
valid with the weaker assumption (2.11) in place of (2.10). To investigate this
open problem, one must apply Theorem 2.2 with a suitable positive continuous
real-valued function p on the interval [0,c0) that satisfies (2.5). In other words,
one must use a renormalization procedure due to Bielecki [4]; this technique is
very useful in obtaining global existence criteria and in studying several stability
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problems (see, for example, the books by Corduneanu [8, 9], and the recent papers
by Ehrnstrom (10—12] and Wahlén [41]).

3. PROOFS OF THE THEOREMS

To prove Theorem 2.1 we will use the fixed point technique, by applying the
Schauder-Tikhonov theorem. This fixed point theorem is essentially the extension
to function spaces of Brouwer’s well-known fixed point theorem for mappings in
Euclidean spaces. This extension, first made by Birkhoff and Kellogg [5] and then
in greater generality by Schauder [39] and Tychonoff [40], will be stated here only
for the special case which we require.

Let V be a set of real-valued functions defined on an interval J, and let £y be a
point of J. The set V is said to be equicontinuous at to if, for each € > 0, there
exists a corresponding § = 6 (€) > 0 such that, for all functions v in V/, it holds
that |v (t) — v (to)| < € for every t € J with |¢ —fo| < d. Also, the set V' is called
bounded at to if there exists a real number @ > 0 such that |v(to)| < © for all
" functions v € V.

The Schauder-Tikhonov theorem. Let i be a fized positive continuous real-
valued function on an interval J, and let Y be the set of all continuous real-valued
functions y defined on J which satisfy

ly (@) < p(t) foralteld.

Let M be a mapping of Y into intself with the properties:

(i) the mapping M is continuous in the sense that, for each function y in'Y and
any sequence (Ym),>y of functions in Y, we have: if lim y,, = y uniformly on
= m—oo
every compact subinterval of J, then lim My, = My uniformly on every compact

m—0o0
subinterval of J;
(ii) the image set MY is equicontinuous at every point of J.
Then the mapping M has at least one fized point in Y, i.e., there ezists at least
one y in Y with y = My.

The Schauder-Tikhonov theorem has been stated, in the form presented above,
by Coppel [7; p. 9], under the additional assumption that the image set MY
is bounded at every point of J. But this assumption is not needed. Indeed, as
MY C Y, from the definition of Y it follows that |(My) (¢)| < u (t) for all functions
yin Y and every t € J, which implies that MY is always bounded at every point
of J. A proof of the Schauder-Tikhonov theorem stated above, which is based on
the use of Brouwer’s theorem for mappings in Euclidean spaces, can be found in [7;
pp- 9—10].

The proof of Theorem 2.2 is based on the use of the well-known Banach contrac-
tion principle (see Banach [3]; see also Kartsatos [14; p. 27]).

The Banach contraction principle. Let E be a Banach space and Y any
nonempty closed subset of E. If M is a contraction of Y into itself, then the
mapping M has ezactly one fized point in Y, i.e., there exists a unigue y in Y
such thot y= MY.
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In order to prove Theorems 2.1 and 2.2, we will first establish the following
proposition.

Proposition 3.1. Let the assumptions of Theorem 2.1 hold.
Let ¢ be a positive real number such that

(3.1) /DOOF ( S l)rt”* o f 2)!1&“'2, oyt c) dt < .

Also, let Y be the set of all continuous real-valued functions y defined on the interval
[0, 00) which satisfy

(3.2) ly(@)| <c forallt>0.

Then the formula
(3.3)

() @) =+ | T 0 To 4 () T[] () s o o [ ()9 (1)) s for £ 0

makes sense for any function y in Y, and this formula defines a mapping M of Y
wnto the set of all continuous real-valued functions defined on [0, c0). Moreover, M
has the properties:

(1) the mapping M is continuous in the sense of the requirement (i) of the
Schauder-Tikhonov theorem;

(i) the image set MY is equicontinuous and bounded at every point of [0,00).

Proof. Consider an arbitrary function y in Y. By the definition of Y, the
function y satisfies (3.2). By using (3.2), for any k& € {0,1,...,n — 2} and every
t > 0, we obtain

nael = |[ S es] < [T
= ]
W L m—2—mry\e| = n—2—&n ¥
(t—s)" " —1-k
< i
= C/O o B (n—14k)v
Because of these inequalities and (3.2) and the assumption that, for each ¢ > 0, the
function F'(t,-,,...,-) is increasing on [0, c0)™, we get

F (& L] @, [y @), s -2 [] @), [y @©)])
c n— c n—2 o
gF(t,( 7L t ,...,ct,c) for all ¢ > 0.

n—1)! "(n—2)!
Together with assumption (2.1) this guarantees that
(3-4) 1F @ Doyl (2), Lyl (@), Tnz [y] (£) , ¥ (£))]
c c
< - -1 _ = in-2 =00
_F(t, (n-—l)!t ’(n—2)!t ; ,ct,c) for every t > 0

In view of (3.4) and hypothesis (3.1), we always have

]nm 1F (b To 9] (), T2 [ (8) s Tz [ (8) 9 (6)] dt < 0.

Hence, we immediately see that the formula (3.3) makes sense for any function y
in Y, and this formula defines a mapping M of Y into the set of all continuous
real-valued functions defined on the interval [0, co).
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Now, by using (3.3) and (3.4), we have, for any function y in ¥ and every o > 0
and t > 0,

(M) () — (My) (ko)
_ ‘ [g IO AT [C RS AN [OR (u))du]

- I:g + loo f (U)IO [yl (u) :'Il [y] (u) 3 In—z [y] (’LL) Y (u)) du:l

= £, To[y] (u), Io [y] () s oo T2 [y (u) , y (w)) A

to

< t \f (uy Zo [y] (w) , I1 [4] (@) 5 ey Tz [4] (%) , ¥ ()| e

< tF c =1 c n—2 d
< A U, (n_l)!d, ’(n—2)1u y -y CU, C ) dU

So, by taking into account hypothesis (3.1), we can easily conclude that the image
set MY is equicontinuous at every point g > 0. Furthermore, by using again (3.3)
and (3.4), for any function y in ¥ and every to > 0, we obtain

|(My) (to)] = ‘£+£mf(uafo[y](U),I1[y](U),-.-,In_ﬂy](u),y(u))du

<l [ 1 b ), B ), T ] ), )]
to
29 c c
< =5 n—1 n—2 2 3
= Bl F(”’ -1 -2 ’“”’c) di
Thus, by hypothesis (3.1), MY is also bounded at every point tp > 0. We have
thus seen that the mapping M has the property (ii).
Next, we shall prove that M has the property (i). Let y be an arbitrary function
in Y and (Ym),,»; be any sequence of functions in ¥ with lim 9, = y uniformly
£ mM—00

on every compact subinterval of [0, 00). By (3.4), we have
|f (1o [ym] (t) 3 I1 [yl (t) s oo In—2 [Um] (£) s Ym (t))l

<F (t, (nf l)It”_l, (n_cz)ltnfz, g OF; c) foreveryt >0 (m=12,..).

So, because of hypothesis (3.1), we can apply the Lebesgue dominated convergence
theorem to obtain, for every t > 0,

mhf»}oo /:)o F ('U:; Io [ym] (w) , 11 [ym] (), -y In—2 {ym] (u) » Ym (u)) du

= f:o Flu,Iofyl (w), I [y] (@) ooy Tnz 9] () , y (w)) du.

Hence, by taking into account the definition of the mapping M by (3.3), we get
lim My,, = My pointwise on [0, c0). It remains to show that lim My, = My
m—o0

m—0oo
uniformly on every compact subinterval of [0,00). To this end, let us consider
an arbitrary subsequence (Muyx,.),>; Of (MYm),,>;- We have previously seen

that MY is equicontinuous and bounded at every point of [0,00). Thus, by the
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Arzeld-Ascoli theorem, there exists a subsequence (M yAVm)m>1 of (Myx,,)m>1

and a continuous real-valued function v defined on the interval [0, co) such that
lim My,, = v uniformly on every compact subinterval of [0,c0). Since the

mM—00
uniform convergence on every compact subinterval of [0, c0) implies the pointwise
convergence on [0,00) to the same limit function, we always have v = My. So,
(MYm) >y converges to My uniformly on every compact subinterval of [0,c0).
Consequently, the mapping M is continuous.

The proof of the proposition has been finished.

Now, we are in a position to present the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. First of all, we observe that hypothesis (2.2) implies (3.1).
Let Y be the set defined as in Proposition 3.1. By this proposition, the formula
(3.3) makes sense for any function y in ¥, and this formula defines a mapping M of
Y into the set of all continuous real-valued functions defined on [0, co). Moreover,
M has the properties (i) and (ii) described in Proposition 3.1. We shall show that
M is a mapping of Y into itself, i.e., that MY C Y. To this end, let us consider an
arbitrary function y in Y. Then (3.4) holds true, and consequently form (3.3) we
obtain, for ¢ > 0,

|(My) (t) - &' = [lm f (u’ Io [y] (u) 711 [y] (u) ) "':In—Z {y] (u) ' Y ('LL)) du

< [ " 1F (e o ] o T e Tz ] G2 )

< [ 1F o o [5] () i [ 0 o T ] () ()]

> c c
< =1 n—2 .
< /0 F ('u., G 1)!d, ’(n—?)!u : ,c’u.,c) du

Hence, in view of hypothesis (2.2), we have
(3.5) |(My) (t) — €| <c—[¢] for every t > 0.

The last inequality implies that |(My) (t)] < ¢ for all ¢ > 0 and so My belongs to
Y. We have thus proved that, for any y in ¥, My €Y, i.e., that MY C Y.

Now we apply the Schauder-Tikhonov theorem to conclude that there exists at
least one y in Y with y = My. By Lemma 1.1, y is a solution of the BVP (1.4)
and (1.5), and the function z defined by (1.8) is a solution of the BVP (1.1)—(1.3).
From (1.8) it follows easily that = satisfies (1.7). Asy € Y and y = My, by taking
into account (1.7), from (3.5) we obtain

(1) (t) — & <c—|& for every t > 0.

Clearly, the last inequality coincides with (2.9). Finally, by using the initial condi-

tion (1.2), it is not difficult to verify that (2.9) implies (2.8). Hence, the solution z

of the BVP (1.1)—(1.3) is such that (2.8) and (2.9) hold, i.e., = satisfies (2.3).
The proof of the theorem is complete.

Proof of Theorem 2.2. Consider the Banach space E = BC ([0,00),R) of all
bounded continuous real-valued functions on the interval [0, co), endowed with the
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usual sup-norm ||-|| defined by
o] =suplv (£)] for v € BC([0,c0),R).
>0

Consider also the set Y defined as in Proposition 3.1. We immediately see that
Y = {y € BC([0,0),R) : |ly]| < c}. The set Y is a nonempty closed subset of
BC ([0, 0), R).

As hypothesis (2.2) implies (3.1), Proposition 3.1 guarantees that the formula
(3.3) makes sense for any function y in Y, and this formula defines a mapping M
of Y into the set of all continuous real-valued functions defined on [0,00), As in
the proof of Theorem 2.1, we can use (2.2) to show that M is a mapping of Y into
itself.

From hypothesis (2.5) it follows that there exist real constants o and 3 with
0 < a < f such that

a<p(t)<p foreveryt=>0.

Thus, for any function v in BC ([0, c0), R), we have
& @)l 1
5 lv ()] < -0 5= lv(t)] forallt=>0

and consequently
1 @) 1
= v|| < sup—= < —||v]| -
5 ol < supl7st < o
Hence, the formula

N O]
llvll, = stgg—ﬁ—(t—) for v € BC ([0, ), R)

defines a norm ||-||, in BC([0,0),R) that is equivalent to the sup-norm [|-]|- So,
E = BC([0,00),R) is a Banach space with respect to the norm ||-|,, and Y is a
_nonempty closed subset of BC ([0, ), R) with respect to the norm [-|,.-

Now, we shall prove that the mapping M is a contraction with respect to the
norm ||-||,- For this purpose, let us consider two arbitrary functions y and ¥ in

Y. By using assumption (2.4), from the definition of the mapping M by (3.3), we
obtain, for every t > 0,

|(My) (t) — (M) (2)]
p(t)

= e [0, B0 s Eas )y ()

- [&+ f " To [ @), Ty 3 () s r T 6] () T () d"]

< ﬁ / T 1F T 9] ), T2 ] ) T ) (), ()
_f (us IO [ﬂ (u) aIl [ﬂ (u) ) "-aIﬂ-—Z [ﬂ (u) ,’g‘j(u))l du
< ﬁt) j L (w) max {|Io [y] () — To [5] )], |11 [8] (&) — L @) (@)1, -

ooy [Tn2 [y] () — T2 8] (W], |y (») = (u) [} du
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IA

p—ég / "L () max {Zo lly — 711 @), T [ly — 31] ()
oo T [ly = B (), o () — 5 () }

_ L Ce)™? ) —F)
= 55 L(“)m"’“‘{fo AT A

D PN OB 101
e R

Y () =7 () ly (w) =7 ()]
...,/0 p(s) Tds,p(u) _PYE)_} du

1 . ~
[p_(t—)l L (w)max {I [p] (u) , I1 [p] (1) , ..., [n—2 [p] (u),p (u)}du] |l — y”p .
Thus, by hypothesis (2.6), there exists 6 with 0 < @ < 1 such that
|My — My]|, <0|ly— yll, -

This inequality holds true for all functions y and 7 in ¥. Hence, M is a contraction
with respect to the norm ||-|| .
Let y be a function in ¥ with y = My. From the definition of the mapping M
by (3.3) it follows that y is a solution on [0, 00) of the integral equation (1.6). Thus,
* Lemma 1.1 ensures that the function = defined by (1.8) is a solution of the BVP
(1.1)—(1.3). It is easy to see that (1.8) implies that (1.7) is also valid. On the other
hand, the definition of the set ¥ guarantees that (3.2) holds true. A combination of
(1.7) and (3.2) leads to the fact that the solution z of the BVP (1.1)—(1.3) satisfies
(2.7). Conversely, let = be a solution of the BVP (1.1)—(1.3) that satisfies 2.0
By Lemma 1.1, the function y defined by (1.7) is a solution on [0, 00) of the integral
equation (1.6). Moreover, by (1.7), inequality (2.7) leads to (3.2). Therefore, y is a
function in ¥ with y = My. After the above observations, the proof of our theorem
can be accomplished by an application of the Banach contraction principle. Hence,
-there exists exactly one y in Y such that y = My. By the above analysis, the
function z defined by (1.8) is the unique solution of the BVP (1.1)—(1.3) satisfying
(2.7). Asin the proof of Theorem 2.1, we conclude that this (unique) solution z of
the BVP (1.1)—(1.3) is such that (2.3) holds.
The proof of the theorem is now complete.

4. APPLICATIONS AND EXAMPLES

Consider the n-th order (n > 1) nonlinear ordinary differential equation of
Emden-Fowler type

n—1
(41) 2™ 0+ 3 as (1)

i=0
as well as the n-th order (n > 1) linear ordinary differential equation

2 (1) |”“ sgnz® (£) = 0

(4.2) (™ (¢) + ni a; (t) 9 () =0,
i=0
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where a; (i =0,1,...,n — 1) are continuous real-valued functions on the interval
[0,0), and v; (¢ =0,1,...,n — 1) are positive real numbers.

We immediately see that the differential equation (4.1) as well as the differential
equation (4.2) have the zero solution = (t) = 0 for ¢ > 0. This solution satisfies the
initial condition (1.2); moreover, when £ = 0, it also satisfies the condition (1.3).

By specifying Theorem 2.1 to the particular case of the BVP (4.1), (1.2) and
(1.3), we get the following corollary.

Corollary 4.1. Let there exist a real number c with c > |£| so that

(4.3) nz_i [Gﬁ] " /0 * nm1-ims la; (£)] dt < c— |€].

i=0 :
Then the BVP (4.1), (1.2) and (1.3) has at least one solution x such that (2.3)
holds.

Next, we shall apply Theorem 2.2 to the special case of the BVP (4.2), (1.2) and
(1.3). In this case, the generalized Lipschitz condition (2.4) is satisfied with

n—1
L()=) la;(t)] fort>0.
i=0
Furthermore, we observe that the linear differential equation (4.2) can be obtained
(as a special case) from (4.1) by taking y; =1 for ¢ =0,1,...,n — 1. In the special
case of the BVP (4.2), (1.2) and (1.3), condition (4.3) becomes

n—1 fove)
CZ(?:i——i)!]O " g (£)| dE < e — (4],

=0

ie.,
n—1 1 oo

4.4 1-y — n—1-i g, (£)| dt| > |£]-
e [ é(nﬂ_mﬁt ja: () ]_m
Let the following condition be satisfied:

n—1

1 o .

4.5 S 1=t (O] dt < 1.
(4.5) g(n_l_i)lfu jas ()]t < 1

Suppose, first, that £ = 0. Then, by (4.5), we immediately see that (4.4) holds true
for any ¢ > 0 = |£|. Next, suppose that £ # 0. Assume that at least one of the
functions a; (¢ =0,1,...,n — 1) is not identically zero on [0, 0c0). This assumption
guarantees that

n—1
1 e ;
(4.6 — ] t" 1 g; (2)| dt > 0.
) S ey o e
By (4.5) and (4.6), the formula

(4.7) = — €l
e e O

defines a real number ¢ with ¢ > |¢|. For this real number ¢, inequality (4.4) holds
true (as an equality). After the above observations, we are led to the next corollary.
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Corollary 4.2. Assume that there erists a positive continuous real-valued func-
tion p on the interval [0, c0) satisfying (2.5) and such that

(4.8)
1 n—1 .co
“n [;(—5 Zﬂ/ﬁ |a: (w)| mex {Zo [p] (w) , 1 [p] (u) , --.; In—2 [p] () , p (w)} du

Moreover, assume that (4.5) holds. Then we have:
(i) Let c be any positive real number. Then the BVP (4.2), (1.2) cmd

(4.9) Jim o (n=1) () = 0

has ezactly one solution x satisfying (2.7); this unique solution is necessarily the
zero solution z(t) =0 for t > 0.

(i) Suppose that at least one of the functions a; (i = 0,1,...,n — 1) is not iden-
tically zero on [0,00). Let £ # 0, and let ¢ > |¢| be the real number defined by
(4.7). Then the BVP (4.2), (1.2) and (1.3) has ezactly one solution z satisfying
(2.7); this unique solution x is such that (2.3) holds.

‘We notice here that the BVP (4.2), (1.2) and (4.9) admits the zero solution
z(t) =0 for ¢ > 0.

Remark 4.3. Choose p(t) = 1 for t > 0 in Corollary 4.2. Then (2.5) is
automatically fulfilled and assumption (4.8) becomes (cf. Remark 2.5)
t'n.——2

-1
(4.10) 1_0f |a; (t){max{(n_ O (= 2)!,...,t,1}dt <1

It is easy to see that (4.10) implies condition (4.5). So, we immediately obtain the
following particular result:
Assume that (4.10) holds. Then we have (i) and (ii) of Corollary 4.2.

Now, in order to give two general examples (each one of which includes one
" specific example) demonstrating the applicability of Theorem 2.1 (more specifically,
of Corollary 4.1), we will concentrate on the particular case of the n-th order (n > 1)
nonlinear ordinary differential equation of Emden-Fowler type

(4.11) ™ (t) + a (t) |z (£)]” sgnz () = 0

where a is a continuous real-valued function on the interval [0,00), and v is a
positive real number. As it concerns the particular case of the BVP (4.11), (1.2)
and (1.3), Corollary 4.1 is formulated as follows.

Let there exist a real number ¢ with ¢ > |¢| so that

4.12) [(n—cﬁr [D "t g (1)) dt < o — ).

Then the BVP (4.11), (1.2) and (1.3) has at least one solution = such that (2.3)
holds.

In Examples 4.4 and 4.5 below, without mentioning it any further, it will be
assumed that the coefficient a is not identically zero on the interval [0,00), and

that & # 0.
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Examples 4.4 and 4.5 concern the Emden-Fowler type nonlinear ordinary differ-
ential equation (4.11) with v = 1 (sublinear case) and y = 2 (superlinear case),
respectively. The motivation for presenting these two examples is the fact that
differential equations of Emden-Fowler type appear very often in applications. For
example, Emden-Fowler equations arise in the study of gas dynamics and fluid
mechanics. Also, such equations appear in the study of relativistic mechanics, nu-
clear physics and in the investigation of chemically reacting systems. The study
of Emden-Fowler equations originates from earlier theories concerning gaseous dy-
namics in astrophysics around the turn of the century.

Example 4.4. Consider the differential equation (4.11) with v = %, i.e., the
sublinear ordinary differential equation
(4.13) ™ (£) +a () |z (t)|*? sgnz (t) = 0.
As it concerns the BVP (4.13), (1.2) and (1.3), condition (4.12) becomes

(4.14) g~ {RI—— fo ~ g1/ la (t)] dt} cl/2 —|¢g| > 0.

n—1)1]*/2
Let the following condition be satisfied:

(4.15) ] £=1)/2 g (4)] dt < oo,
0

Following the lines of Example 1 in the author’s paper [29], we can show that (4.14)
is valid (as an equality) for

e[ — L [Tumnrzyg
(4.16) (2[(n_1)!]1 . fo {112 | (2)) dt

2
1 o
+\]{W/ “ ”/"*lwnf} +le

By taking into account (4.15), we can easily see that the formula (4.16) defines a
real number ¢ with ¢ > |£|. So, we obtain the following result.

Assume that condition (4.15) is satisfied, and let c be the real number given by
(4.16) (note that ¢ > |£|). Then the BVP (4.13), (1.2) and (1.3) has at least one
solution x such that (2.3) holds.

Now, we choose n =3, £ =13, and a(t) = 2/2/ (¢t + 1) for t > 0. Then we can
see that condition (4.15) is satisfied, and that (4.16) gives ¢ = % Hence, we arTive
at the following result: The boundary value problem

{ o7 () + 2 |o ()] sgna 1) =

2

D 0
z(0) =2 (0) =0, t]ingom” =21

has at least one solution x such that, for every t > 0,

2—85t2, i—t <z'(t) < Et, and

5, 5
=t° < < act
gt 2= 1 4
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Example 4.5. Let us consider the case of the differential equation (4.11) with
¥ = 2, i.e., the case of the superlinear ordinary differential equation
(4.17) 2™ (t) +a (t) [« (£))* sgnz (£) = 0.
In the case of the BVP (4.17), (1.2) and (1.3), condition (4.12) is written as

(4.18) {[(_n”—l“ﬁF / T e g (1) dt} & —ct e <0.

Let us suppose that
(4.19) / 2v=1) |q (¢)| dt < oo.
0

After a long analysis similar to that used by the author in Example 2 in [29], we
can be led to the conclusion that, if

_ 1 [T enay, 1
(4.20) [(n—l)!]z./o ¢ | (t)ldt$4|5|,

then (4.18) holds (as an equality) for

A 1— \/1 _4{W Jo~ t3n=1) |a(t)[dt} €|
- (4.21 c=

We notice that (4.20) implies condition (4.19). By the use of (4.20), it is not difficult
to verify that the formula (4.21) defines a real number ¢ with ¢ > |¢|. Thus, we get
the next result.

Assume that condition (4.20) is satisfied, and let c be the real number given by
(4-21) (note that c > |£[). Then the BVP (4.17), (1.2) and (1.3) has at least one
solution x such that (2.3) holds.

Now, set n. =3, £ = £, and a(t) = 10/ (¢ + 1)® for t > 0. Then we can verify
‘that COIldlthIl (4.20) is fulfilled (as a strict inequality), and that (4.21) becomes
: . Thus, the next result is true: The boundary value problem

{ " (4) + m [ (8) sena (1) = 0
8

e " e B
z(0) =2/ {0) = tlg]goa: (2) =
has at least one solution z such that, for every t >0,

étz <z(t)< 4_11t2’ 5 <z () < %t, and

T 2" (‘t) =

uhll—'
b2 =

Before closing this section, we shall give a specific example, in which Theorem
2.2 (more specifically, the particular result stated in Remark 4.3) is applied.

Example 4.6. Consider the differential equation (4.2) with n = 3, and a () =
a1 (t) = az(t) = 2/ [3 (t+ 1)4] for t > 0, ie., the third order linear ordinary
differential equation

(4.22) 2" (8) + ﬁ @ () + ' () + 2" (£)] = 0.
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Together with (4.22), we specify the initial condition

(4.23) {0y =='(0) =0
Moreover, along with (4.22), we impose the condition
(4.24) tlim ' (t) =0

or the condition
& I _
(4.25) Jim 2 (t) =5.

It is not difficult to check that condition (4.10) is satisfied. Consequently, we
are led to the following result: Let ¢ be any positive real number. Then the BVP
(4.22)—(4.24) has exactly one solution z with

|z” (t)| < ¢ for all t > 0;

this unique solution is necessarily the zero solution z (t) = 0 for ¢ > 0. Further-
more, we can see that, when £ = 5, equation (4.7) gives ¢ = 9. Hence, we derive
the next result: The BVP (4.22), (4.23) and (4.25) has exactly one solution = with

|z ()] <9 for all t > 0;

this unique solution z is such that, for every t > 0,

%259;(1:)5%#, t<z'(t) <9, and 1<z"(t) <9.
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